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Abstract
Context—During the 2009 H1N1 pandemic, computational agent-based models (ABMs) were
extensively used to evaluate interventions to control the spread of emerging pathogens. However,
evaluating different possible combinations of interventions using ABMs can be computationally
very expensive and time-consuming. Therefore, most policy studies have examined the impact of
a single policy decision.

Objective—To apply a sequential experimental design method with an ABM to analyze policy
alternatives composed of a combination of school closure and vaccination policies to provide a set
of promising “optimal” combinations of policies to control an H1N1-type epidemic to policy
makers.

Methods—We used an open-source agent-based modeling system, FRED (A Framework for
Reconstructing Epidemiological Dynamic), to simulate the spread of an H1N1 epidemic in
Alleghany County, Pennsylvania, with a census-based synthetic population. We used an approach
called best subset selection method to evaluate 72 alternative policies consisting of a combination
of options for school closure threshold, closure duration, Advisory Committee on Immunization
Practices prioritization, and second-dose vaccination prioritization policies. Using the attack rate
as a performance measure, best subset selection enabled us to eliminate inferior alternatives and
identify a small group of alternative policies that could be further evaluated on the basis of other
criteria.

Results—Our sequential design approach to evaluate a combination of alternative mitigation
policies leads to a savings in computational effort by a factor of 2 when examining combinations
of school closure and vaccination policies.

Conclusions—Best subset selection demonstrates a substantial reduction in the computational
burden of a large-scale ABM in evaluating several alternative policies. Our method also provides
policy makers with a set of promising policy combinations for further evaluation based on
implementation considerations or other criteria.
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Agent-based models (ABMs) can capture complex system dynamics arising out of
individual behavior and interactions of heterogeneous agents. They are increasingly used to
simulate the spread of infectious agents and evaluate mitigation strategies. In addition,
ABMs can be used to explore the costs and benefits of various disease prevention,
diagnostics, and treatment interventions for even new agents and aid policy makers in
forming an overall response policy under resource-limited settings.1 However, ABMs that
capture different aspects of geography and disease spread to simulate the real-life situation
can be complex and computationally intensive.

Agent-based models have been used to help public health decision makers and agencies
prepare for potential events such as pandemics or bioterrorism attacks by evaluating
potential responses such as vaccination policies2-5 or school closure policies.6,7 However,
these models typically evaluate a only a small number of candidate strategies instead of
considering a full spectrum of policy options.8 The computational burden discourages
modelers from evaluating multiple combinations of mitigation strategies. During the time of
a pandemic, delays in the translation of results of modeling experiments to relevant policy
makers can have a substantial impact on the population health.

While evaluation of multiple strategies can be computationally expensive, well-designed
experiments can minimize the effort needed to provide estimates of the performance of
alternative policies. Classical designs such as the Hsu9 method for Multiple Comparisons
with the Best can be used to determine the computational effort needed to evaluate a number
of alternatives and identify which ones are close to the best with a specified statistical level
of precision. In the case of simulation experiments, there are methods that adjust the number
of replications required during the middle of the experiment. These sequential procedures
iteratively use screening procedures that steadily reduce the number of alternatives that
require further simulation until they obtain the final result.10

In this work, we evaluate the use of sequential experimental design methods to reduce the
computational burden of evaluating multiple intervention policies in a complex agent-based
disease transmission model.11 Specifically, we apply the best subset selection (BSS) method
to the FRED (A Framework for Reconstructing Epidemiological Dynamic) simulation
model of the spread of H1N1 epidemic in Alleghany County, Pennsylvania, with a census-
based synthetic population. The BSS method selects good policies that are close in
performance to the best policy.11 This is in contrast to optimization methods that attempt to
find the optimal policy. The BSS method supports health policy makers’ desire to identify a
set of alternatives instead of a single “best” policy.12 This allows policy makers to use the
results of models even in cases when the models used do not address all of the issues that
need to be considered by the policy makers.

Methods
We simulated the spread of influenza and several mitigation policies in Allegheny County,
Pennsylvania. We used FRED, developed at the University of Pittsburgh. FRED is a
modular, open-source framework that uses agent-based modeling based on a census-based
synthetic population that captures the demographic and geographic distributions of the
population as well as detailed household, school, and workplace social networks.

We examined a combination of 4 intervention policies: (1) the school closure threshold, that
is, if the attack rate in a given school increases a certain threshold, close the school; (2) the
school closure period; (3) if the Advisory Committee on Immunization Practices (ACIP)
recommendations on vaccine priorities is used; and (4) the vaccination priority rule to be
used in the case where 2 vaccine doses are required. The threshold for closing individual
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schools was set to 3 possible values: 0.02, 0.05, and 0.10 of an individual school population
infected. For the school closure period, 3 options were implemented: 5, 10, and 15 days.
This corresponds to 1, 2, and 3 weeks of school closure for each instance. On the basis of
information published by the Centers for Disease Control and Prevention,13 the vaccine was
modeled in FRED to have the following characteristics: 1 dose is required for those older
than 10 years, and 2 doses for those up to 9 years of age. For those 9 years and younger, the
second dose is required 28 days after the first dose. Vaccines become available by day 7 of
the epidemic and are available as needed thereafter. Vaccine efficacy by age was set as
determined in Zhu et al.14

Next we examined 2 aspects of the vaccine policy—the choice to follow the ACIP
guidelines (yes or no), and the priority rule for the use of second dose. The ACIP priority
policy indicates whether or not the ACIP priority guidelines were followed. This includes
giving priority in vaccinating persons aged 0 to 24 years, people deemed at risk for
complications for influenza, pregnant women, and people older than 64 years.15 The vaccine
priority rule determines the priority of persons getting a second dose versus people getting
their first dose. The 4 levels of vaccine priority being examined are as follows: (1) first come
first serve; (2) place people getting the second dose at the front of the queue; (3) mix in
people getting the second dose with other priority vaccinations randomly; and (4) place
people getting the second dose at the end of the queue. The combination of all of these
policy options generated 72 potential policy combinations.

We applied a sequential experimental design method to evaluate the above-defined policy
options.11 This takes as inputs 2 parameters: a desired region and an acceptable region
(Figure 1). The desired region should represent the difference in performance measures
where the 2 policies should be viewed as having practically the same performance. The
acceptable region should represent the uncertainty in the simulation results so that if a policy
is close to the desired region boundary, it does not matter whether or not it is included in the
final results given to the decision maker. These parameters define the policy maker’s
indifference zone, that is, a performance region near the best alternative policy where policy
outcomes are considered to be effectively equal. Our method runs a small number of
simulation replications for all alternatives and then runs additional replications for all policy
alternatives that have not been eliminated because of poor performance. Doing so efficiently
uses computational resources on good performing policies.

For our analysis, we used the attack rate at the performance measure. The indifference zone
was set to 1.0% and the acceptable region to 0.5% difference in attack rate. We simulated 12
initial replications, n0, of each policy before the method began screening policies. Each
replication simulated 100 days from the introduction of the agent.

Results
Following the initial n0 replications, the BSS method identified 8 alternatives that were close
to the best policy for further evaluation. After 6 more rounds of replications, these 8
alternatives were confirmed as the set of alternatives that lay within the desired or
acceptable regions. This required a total of 912 replications across the 72 alternatives. We
plotted the mean attack rate and variation as determined through the simulation runs of the
72 policies, using the box and whiskers plot in (Figure 2).

The Table summarizes the set of 8 policies across 4 policy dimensions that were found to be
significantly better than the others. The policies in the best subset correspond to the policies
with a low school closure threshold (0.02), follow the ACIP recommendations on vaccine
priority, and have either 10- or 15-day school closure periods. In comparison, the priority
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scheme for the second dose for those 9 years and younger did not have a significant effect
on the simulated attack rate. In particular, these results suggest that because the difference in
the 10- and 15-day school closure period is not of practical significance, a policy maker
would choose the 10-day closure period after recognizing the additional expense incurred by
a 15-day school closure.

We also compared the computational burden of our method with a traditional design of
experiment method. The Hsu9 method of Multiple Comparisons with the Best determines a
replication number for all options based on simultaneous confidence intervals. This method
can be made to correspond to BSS by setting the minimum significant difference to be the
same as the indifference zone used with BSS. Similar to BSS, the Hsu method does not
assume prior knowledge of the best policy; instead, the Hsu method compares each policy in
terms of its distance from the best and does not predetermine how many (if any) policies
would be considered close to the best.

Using the Hsu method, we determine the number of replications that can be expected to be
required to construct the 72 simultaneous 100% (1%-0.05%) confidence intervals for the
difference between each configuration and the best (lowest attack rate) configuration. Since
we set the indifference zone to 1.0 and the acceptable region to 0.5, we will take as a goal to
detect a minimum significant difference in attack rate of 1.0 + 0.5 = 1.5%. Following the
Hsu method, we find that approximately 23 replications of each alternative policy would be
required, resulting in a total of 1656 replications across 72 policy alternatives.

In comparison, when implementing the BSS method, a total of 912 replications were
required across 72 policy alternatives, implying 45% reduction in computational burden to
achieve the same statistical guarantee of identifying policies that should be included. This
savings comes from the fact that after the initial replications and after every round of
simulations, the BSS method makes a decision on the remaining alternatives and determines
which alternatives require continued analysis based on the specified desired region,
acceptable region, and level of confidence.

It should be noted that the replications identified by this use of the Hsu method are an
approximation, based on the estimate of the mean and variance of the performance of each
alternative over the initial n0 = 12 replications. Therefore, in principle, there is no statistical
guarantee that at the conclusion of the 23 replications that the resulting confidence intervals
would allow us to correctly categorize each alternative as close or not close to the best
policy.

Discussion and Conclusion
We demonstrate an example of using sequential experimental design methods along with an
established ABM to examine a combination of different mitigation policies to respond to an
infectious disease outbreak. Our method reduces the computational burden of running large-
scale ABMs by rejecting poor performing policy alternatives quickly. The savings of 45% in
computational burden could lead to a more rapid response to policy makers or evaluation of
interactions of policies across more axes even with limited time resources. In addition, since
the method generates a set of results, policy makers can then take the identified alternatives
and evaluate them on the basis of criteria not addressed in the model. (eg, considering
societal cost or social disruption in addition to attack rate).

However, the savings demonstrated are specific to the characteristics of the agent, the
intervention, and the set of the policy options that were to be examined. One limitation to
this study was a limited range of values that could be covered on each policy axis. In
addition, this study examines only the uncertainty due to the Monte Carlo simulation and not
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parameter uncertainty. This method can be combined with experimental designs that directly
address these issues so that these can be examined across multiple policy axes
simultaneously.

Another practical approach to evaluate several multiple policy combinations for making
real-time decisions is to run hundreds of simulations a priori, as done by the FRED
Navigator.16 However, this approach requires the knowledge of the infectious agent’s
characteristics, which is not always possible for a novel agent.

Sequential experimental design methods have a promise of reducing the computational
burden of running large-scale ABMs. However, to examine the interaction effect of the
range of policy options that need to be considered in infectious disease control, savings on
the order of 45% such as that observed in this study may not be sufficient. More work needs
to be done in exploring other methods for looking at multidimensional policy interactions
and how other methods such as stochastic kriging or meta-modeling perform when
exploring a large state-space model for infectious disease control.
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FIGURE 1. Three Regions of Best Subset Selectiona
aThe desired region is where policy alternatives must be included in the final result set,
policies in the undesired region should not be included, while those in the acceptable region
are optional (may or may not be included). The parameters λ+ and λ−, which define the
boundaries between the regions, should be based on what would be a practically
insignificant difference in outcomes, whereas ε, which defines the size of the acceptable
region, would be set on the basis of the believed precision of the simulation model.
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FIGURE 2. Simulated Attack Rate for Each Intervention Policya
aFor each of the 72 policies, the box and whiskers show the interquartile range and the range
of performance for the replications of that system. The dark circles represent the median
attack rate for that configuration, whereas open circles represent outliers in reported
performance.
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TABLE

Policies Identified as a Member of the Best Subset

Closure
Threshold

Closure
Period, d ACIP Second Dose

Priority Attack Rate

0.02 10 Y 0 36.18

0.02 10 Y 1 36.28

0.02 10 Y 2 36.20

0.02 10 Y 3 36.21

0.02 15 Y 0 35.27

0.02 15 Y 1 35.38

0.02 15 Y 2 35.29

0.02 15 Y 3 35.28

Abbreviations: ACIP, Advisory Committee on Immunization Practices; Y, yes.
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